

- 1 Decoupled carbonate chemistry controls on the incorporation of boron
- 2 into Orbulina universa.
- 3
- 4 Howes EL^{1,2}, Kaczmarek K¹, Raitzsch M³, Mewes A¹, Bijma N⁴, Horn I⁵, Misra S
- 5 ⁶, Gattuso J-P 2,7 , Bijma J 1
- 6
- 7 ^{1.} Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research,
- 8 Bremerhaven, Germany
- 9 ^{2.} Sorbonne Universités, UPMC Univ Paris 06, Observatoire Océanologique, F-06230
- 10 Villefranche-sur-mer, France
- ³ MARUM Zentrum für Marine Umweltwissenschaften, Universität Bremen,
- 12 Leobener Str., 28359 Bremen, Germany
- ⁴ Christian-Albrechts-Universität zu Kiel, Germany
- ^{5.} Institut für Mineralogie, Leibniz Universität Hannover, Callinstraße 3, 30167
- 15 Hannover, Germany
- ⁶ University of Cambridge, Department of Earth Sciences, Godwin Laboratory for
- 17 Paleoclimate Research, Downing Street, Cambridge, United Kingdom
- ^{7.} CNRS-INSU, Laboratoire d'Océanographie de Villefranche, F-06230 Villefranche-
- 19 sur-mer, France
- 20

21 Abstract

- 22 In order to fully constrain paleo-carbonate systems, proxies for two out of seven
- 23 parameters, plus temperature and salinity are required. The boron isotopic
- 24 composition (δ^{11} B) of planktonic for a shells is a powerful tool to reconstruct
- changes in past surface ocean pH. As B(OH)₄ is substituted into the biogenic calcite
- lattice in place of $CO_3^{2^2}$, it has been suggested that B/Ca ratios in biogenic calcite are
- a possible proxy for $[CO_3^{2-}]$. However, differentiating between the effects of pH and
- $[CO_3^{2-}]$ is problematic, as they co-vary closely in natural systems, and so the major
- 29 control on boron incorporation remains unclear. To deconvolve the effects of pH and
- 30 $[CO_3^{2^2}]$ on the B/Ca ratio and to test whether $\delta^{11}B$ remains constant at constant pH,
- but under changing $[CO_3^{2-}]$ (pH 8.05 with 238, 285 and 532 μ mol kg⁻¹ CO₃²⁻) and
- 32 vice versa, we decoupled pH and $[CO_3^{2-}]$ (276 ± 19.5 µmol kg⁻¹ CO₃²⁻ with pH 7.7,

- 33 7.9 and 8.05) and grew the planktonic foraminifer *Orbulina universa* in these
- 34 manipulated culture media. Measurements of the isotope composition of boron and
- 35 the B/Ca ratio were performed simultaneously using a femtosecond laser ablation
- 36 system coupled to an MC ICP-MS. Results show that δ^{11} B is controlled by pH and
- does not respond to changes in $[CO_3^{2-}]$. On the other hand, the B/Ca ratio is driven by
- 38 [HCO₃⁻] independently of pH. This suggests that B/Ca ratios in foraminiferal calcite
- 39 may be used as a second, independent, proxy for paleo-carbonate system
- 40 reconstructions.
- 41
- 42 43

45

44 Introduction

Before the Anthropocene, the atmospheric CO₂ concentration was governed by the
surface ocean [CO₂], simply because the carbon content of the ocean is 65 times
larger than that of the atmosphere (Siegenthaler and Sarmiento, 1993). Hence,

49 understanding the global carbon cycle and the evolution of atmospheric pCO_2 in Earth

50 history requires knowledge of the dynamics of the oceanic carbonate chemistry. The

51 unprecedented magnitude and rate of carbon emissions since the industrial revolution

has resulted in warming, and acidification of the ocean (Bijma et al., 2013; Ciais et

al., 2013; Gattuso and Hansson, 2011; Rhein et al., 2013). As a result, the interest in

54 the reconstruction of seawater carbonate chemistry to identify ocean acidification in

55 Earth history experienced another impetus (Hönisch et al., 2012; Martínez-Botí et al.,

- 56 2015). The reconstruction of the full oceanic carbonate chemistry requires proxies of
- 57 at least two independent parameters of the carbonate system, in addition to
- 58 temperature and salinity.
- 59

60 The most promising tool, for reconstructing pH is the boron isotopic composition

61 $(\delta^{11}B)$ of biogenic carbonate producers such as foraminifera and corals (Hönisch et

62 al., 2004; Rae et al., 2011; Sanyal et al., 2001; Sanyal et al., 1996). Boron exists in

- 63 seawater primarily in the form of two species, boric acid $(B(OH)_3)$ and borate ion
- $(B(OH)_4;$ Fig. 1A). As for all weak acids, the relative abundance between these two
- 65 species is controlled by pH (Dickson, 1990; DOE, 1994). Because of the isotopic
- fractionation between the two aqueous species (Fig 1B; $\alpha_{4-3} = R_{B(OH)4-}/R_{B(OH)3}$), the
- boron isotopic composition of each species is also pH dependent (Hemming and

68	Hanson, 1992; Palmer et al., 1987; Sanyal et al., 1996; Sanyal et al., 2000). At low
69	pH (<7) nearly all boron is present in the form of boric acid, whereas at high p H (>10)
70	boron primarily exists as borate. B(OH) ₃ is enriched in the stable isotope ¹¹ B
71	compared to B(OH) ₄ , with a constant isotopic fractionation of 27.2 ‰ between the
72	two boron species (Klochko et al., 2009; Klochko et al., 2006). Consequently, as the
73	relative concentration of the dissolved species changes with pH, so does their isotopic
74	composition. Because it is assumed that only the charged species, borate, is
75	incorporated into the calcite lattice (Hemming and Hanson, 1992; Vengosh et al.,
76	1991) the boron isotopic composition of marine carbonates thus records the pH that
77	prevailed when the calcium carbonate was precipitated.
78	
79	The $\delta^{11}B$ of marine calcifiers such as corals, bivalves, for aminifera, pteropods, etc.
80	can be used as a proxy for paleo pH and therefore provide clues on the evolution of a
81	key parameter of the oceanic carbonate chemistry. For instance, Spivack et al. (1993)
82	estimated that the pH of the surface ocean may have changed from 7.4 in the Miocene
83	to 8.2 in the Holocene. Sanyal et al. (1995) estimated that during the last glacial
84	maximum the deep ocean pH was about 0.3 pH unit higher and the surface ocean pH
85	about 0.2 pH unit higher compared to that of the modern values. Inspired by such
86	promising results several groups took on the challenge to reconstruct ocean pH. In the
87	subsequent years, many studies have dealt with reconstructing past oceanic pH across
88	different time scales using the boron isotopic composition of mainly foraminifera but
89	also corals (Foster et al., 2012; Foster et al., 2006; Hemming et al., 1998; Hönisch et
90	al., 2011; Hönisch et al., 2008; Hönisch and Hemming, 2005; Hönisch et al., 2009;
91	Hönisch et al., 2007; Hönisch et al., 2012; Martínez-Botí et al., 2015; Palmer et al.,
92	1998; Pearson and Palmer, 2000; Pearson and Palmer, 1999; Sanyal et al., 1997;
93	Sanyal et al., 1995; Spivack et al., 1993).
94	
95	δ^{11} B is proved to be a reliable recorder of pH but, in the aforementioned
96	reconstructions, the second carbonate system parameter used to reconstruct pCO_2 was
97	based on assumptions. In existing boron-based reconstructions, investigators
98	attempted to estimate total alkalinity (A_T) or $[CO_3^{2-}]$ from modern ocean conditions or
99	reconstructions of carbonate compensation depth (CCD). In the modern ocean $A_{\rm T}$ is
100	linearly correlated with salinity, because total alkalinity is the charge balance between

101	the major conservative ions in seawater, and this charge balance varies with salinity
102	(Dickson, 1981; Dickson, 1992; Wolf-Gladrow et al., 1999; Wolf-Gladrow et al.,
103	2007). Therefore, total alkalinity is a conservative parameter. It is assumed that the
104	modern salinity– A_T relationship was constant over time so that A_T can be estimated
105	from reconstructions of salinity using sea-level records (Foster, 2008; Hönisch et al.,
106	2009). However, salinity and alkalinity may be decoupled in space and time through
107	weathering and changes in the hydrological cycle and, reliable proxies for regional
108	salinity reconstructions are not available to date. Another approach is based on the
109	assumption that seawater $[Ca^{2+}]$ has remained proportional to A_T over time so that A_T
110	can be adjusted in a way that the water column is exactly saturated with respect to
111	calcite at the lysocline (~500 m above the CCD; Pearson and Palmer, 2000). In other
112	studies, $[CO_3^{2-}]$ was estimated through adjusting the surface ocean $[CO_3^{2-}]$ to match
113	the CCD. The CCD, however, is not uniform through space and time (Van Andel,
114	1975), calling into question these approaches for estimating past $A_{\rm T}$.
115	
116	Considering the relatively large uncertainties afflicted with the constraints described
117	above, it is of utmost importance to develop proxies for a carbonate system parameter
118	in addition to pH. A potential one is the B/Ca ratio of planktonic foraminifera that has
119	been used as a proxy for estimating past changes in $[CO_3^{2-}]$ (Foster, 2008), given that
120	the concentration of borate $B(OH)_4^-$) increases with pH and pH co-varies with $[CO_3^{2-}$
121]. However, it is challenging, if not impossible, to identify the parameter controlling
122	B/Ca based on samples that have grown in natural seawater because pH and carbonate
123	chemistry parameters co-vary closely in natural systems. To disentangle their effects
124	on a proxy it is necessary to deconvolve the carbonate chemistry.
125	
126	A more recent study (Allen et al., 2012) has shown that the B/Ca ratio of planktonic
105	

127 for an infer also decreases with increasing total inorganic carbon (C_T) or $[HCO_3]$ at

- 128 constant pH (i.e. $[B(OH)_4^-]$ was constant while $[CO_3^{2^-}]$ and $[HCO_3^-]$ were increased),
- 129 suggesting that borate and carbon species compete for the inclusion into the calcite
- 130 lattice. However, in this study pH was not decoupled from $[CO_3^{2-}]$, leaving the
- 131 question open whether the B/Ca ratio in planktonic foraminifera is influenced by the
- ratio between $[B(OH)_4]$ and C_T or $[HCO_3]$. Kaczmarek et al. (2015b) decoupled the
- 133 carbonate chemistry and showed that B/Ca in the benthic foraminifer Amphistegina

- 134 *lessonii* is influenced by the ratio between [B(OH)₄⁻] and [HCO₃⁻], rather than by pH
- or $[CO_3^{2-}]$. Recently, Henehan et al. (2015) suggested that B/Ca in *Globigerinoides*
- 136 *ruber* might be controlled by [PO₄]. We believe that this relationship results from a
- 137 co-variation between ocean carbonate chemistry and nutrients because respiration of
- 138 organic matter will release both carbon and nutrients. Here we conducted experiments
- 139 with a planktonic foraminifer and decoupled pH and $[CO_3^{2-}]$, as performed by
- 140 Kaczmarek et al. (2015b). We also show that combined measurements of $\delta^{11}B_{calcite}$
- 141 and B/Ca of the same species as conducted in our study might be used to fully
- 142 constrain the carbonate chemistry in Earth history.
- 143
- 144

145 Methods

146 *Collection and culturing:*

147 Living specimens of *Orbulina universa* were collected daily using a 57 cm diameter

- 148 WP2 plankton net (200 μm mesh size), between July and September 2012 at Point B,
- 149 Villefranche-sur-Mer, France (43.41°N, 7.19°E) and maintained until gametogenesis
- in laboratory cultures at the Laboratoire d'Oceanographie de Villefranche.
- 151 Established procedures for maintaining planktonic foraminifera in laboratory culture
- 152 were used (Bemis et al., 1998; Bijma et al., 1998; Spero and Lea, 1993). Briefly,
- specimens were identified, measured with a light microscope, and transferred to 0.2
- 154 µm-filtered seawater, whose carbonate chemistry was accurately determined and
- subsequently modified. Specimens were maintained individually in air-tight 100 ml
- acid-washed SCHOTT DURAN® bottles that were sealed without an air space and
- 157 placed upside down into thermostated water baths maintained at a temperature of
- 158 23°C (±0.2°C). Light was provided by 4, 39 W fluorescent tubes (JBL Solar Ultra
- 159 Marin Day), with reflectors, (at a distance of ca. 15 cm from the water surface), with a
- 160 12:12 h L: D photoperiod. The average irradiance, measured with a LI-193 sensor
- 161 (LiCOR) in the culture jars was about 290 μ mol photons m⁻² s⁻¹.
- 162
- 163 The foraminifers were fed a one-day-old brine shrimp *Artemia nauplius* every second
- 164 day until gametogenesis. The brine shrimps were hatched in modified seawater from
- the same batch as used for culturing the foraminifera. Just prior to feeding, hatched
- 166 nauplii were transferred once again to fresh medium from the same batch. After

167	feeding culture jars were topped up with medium from the same batch to prevent the
168	formation of a headspace. Empty shells were collected within 24 h after successful
169	gametogenesis, rinsed in deionised water and archived in covered micro paleo-slides
170	for later analysis. Approximately 35 tests were grown for each experimental
171	treatment. Culture water samples were collected at the start and end of the
172	experiments to verify the boron concentration, its isotopic composition and the
173	carbonate system parameters.
174	
175	Modified seawater chemistry
176	The objective of these experiments was to decouple seawater pH and $[CO_3^{2-}]$ and
177	create treatments with a constant pH and varying carbonate ion concentration and
178	treatments with a constant carbonate ion concentration but varying pH. To decouple
179	the effects of pH_T and $[CO_3^{2-}]$, seawater carbonate chemistry was modified
180	manipulating pH_T , using NaOH and HCl, and dissolved inorganic carbon (C_T) by
181	adding gravimetrically carbonate and bicarbonate or bubbling with CO ₂ . Calculations
182	were made using csys_vari.m (Zeebe et al., 2001) with carbonic acid dissociation
183	constants of (Mehrbach et al., 1973). Temperature (23°C) and salinity (38.0) were
184	kept constant (Table 1).
185	
186	To enable single shell analysis by LA-MC-ICP-MS, the boron concentration was
187	increased to about 10 times the concentration of natural seawater by adding boric acid
188	to the culture water (see Sanyal et al., 2001; Sanyal et al., 1996; Sanyal et al., 2000).
189	The pH_T and C_T were then modified via titration with boron free NaOH (1N) and HCl
190	(1N) to bring the experimental pH to desired levels of 7.70 ± 0.03 , 7.90 ± 0.02 and 8.
191	05 ± 0.05 , respectively. Culture water samples collected at the start and at the end of
192	each experiment showed that pH remained nearly constant throughout each
193	experiment. The boron isotopic composition of each culture treatment is provided in
194	Table 1. pH of the culture solutions was measured using a Metrohm, 826 mobile pH
195	meter with glass electrode (Metrohm, electrode plus) calibrated to the total scale using
196	TRIS and 2-aminopyridine buffer solutions (Dickson et al., 2007) adjusted to a
197	salinity of 38.0 (Martinez-Boti et al. 2015). Total alkalinity (A _T) samples (150 mL)
198	were filtered on GF/F and measured potentiometrically using a Metrohm Tritando 80
199	titrator and a Metrohm, electrode plus glass electrode (Dickson et al., 2007). 60 ml

samples was also taken at the start and end of incubations and poisoned with 10 μ L of saturated HgCl₂ pending determination of dissolved inorganic carbon ($C_{\rm T}$). Samples were measured using an AIRICA (Marianda, Kiel) fitted with a Licor 6262 infra-red

203 gas analyser. All parameters of the carbonate system were calculated from $A_{\rm T}$ and pH_T

204 (Hoppe et al., 2012) using the R package seacarb (Lavigne and Gattuso, 2013).

205

206

207 Analysis of O. universa

208 For simultaneous determination of the B isotopic composition and its concentration a Fiber Optics Spectrometer (Maya2000 Pro, Ocean Optics) was connected to the torch 209 210 of a Thermo Finnigan Neptune multiple-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at the Leibniz University of Hannover. Laser ablation on 211 reference material and samples was performed by an in-house build UV-femtosecond 212 laser ablation system based on a regenerative one box femtosecond laser (Solstice 213 Newport/Spectra Physics). A detailed description of the method used for the 214 simultaneous determination of B concentration and δ^{11} B of *O.universa* can be found 215 in Kaczmarek et al. (2015a). A summary of the procedure is given below. 216

217

218 Simultaneous determination of B concentration and $\delta^{ll}B$

The B intensity of a reference material corresponds to its known B concentration. 219 Based on this relationship the unknown B concentration of a sample can be 220 221 calculated. However, our measurements of the reference material (NIST SRM 610) and samples were not performed at the same laser repetition rate hence their B ratio is 222 223 not proportional. The correction for different laser repetition rates was realized by the 224 analysis of calcium in the reference material and in the sample because their Ca concentrations are known (NIST SRM 610: 8.45%, CaCO₃: 40%) using an optical 225 spectrometer (Maya2000 Pro). More information on this procedure is provided by 226 Longerich et al. (1996). 227

228

229 *Calcium analysis*

The Maya2000 Pro is a high-sensitivity fiber optical spectrometer. It has a measuring range between 250 to 460 nm with a resolution of 0.11 nm covering the first order emission lines of Mg II, Ca II, Sr II Ba II and Li II. It is equipped with a back-thinned

233 2D FFT-CCD detector, and a grating with a groove density of 1200 lines/mm. The optical fiber used is two meters long (attenuation of the photon flux is length 234 dependent) connecting the spectrometer with the coupling lens at the end of the 235 plasma torch of the MC-ICP-MS (Thermo Finnigan Neptune). Ca II ion lines were 236 measured at a wavelength of 393.48 and 396.86 nm. At these wavelengths the Ca 237 spectra shows no detectable interferences for the matrices used. The acquisition 238 239 parameters were set to acquire 220 cycles per analysis with an integration time of 1 s for each cycle. Because of the stable Background (BG) signal detected for the first 40 240 241 cycles, BG correction was done by subtracting its intensity from the intensity of the reference and the sample material. 242

243

244 Boron Isotope Analysis - 194 nm femtosecond laser ablation

The in-house built laser ablation system is based on a 100 femtosecond Ti-sapphire 245 regenerative amplifier system operating at a fundamental wavelength of 777nm in the 246 infrared spectrum. Subsequent harmonic generations produce the wavelengths 389 nm 247 in the second, 259 nm in the third and 194 nm in the fourth harmonic. The pulse 248 energies measured with a pyroelectric sensor (Molectron, USA) are 3.2mJ/pulse at 249 777nm, 0.7 mJ/pulse at 259 nm, and 0.085 mJ/pulse at 194 nm. After the fourth 250 harmonic generation stage, the 194 nm beam is steered by eight dichronic mirrors into 251 252 a 8x objective (NewWave-Research, USA) and focussed onto the sample. Spot size was set to 50 µm for the reference material and the samples. Within this spot an 253 energy density of ~2 J/cm² is maintained. Reference material measurements were 254 performed in raster mode (100µm x 100µm) at 10 Hz, samples were ablated at 8-50 255 256 Hz depending on B concentration.

257

258 Boron Isotope Analysis - Acquisition parameters

All measurements are carried out in low mass resolution ($\Delta m/m=350$ where m is the mass of the ion of interest and Δm is the mass difference between its 5 and 95% peak height). Compact discrete dynode multipliers (CDD, Thermo) are attached to faraday cups at the low site on L4 and the high site on H4. The low resolution mode is sufficient enough to resolve potential interferences from doubly charged ions due to the intrinsic high resolution in the low mass region. Possible interferences are the clusters of ${}^{40}\text{Ar}^{4+}$ or ${}^{20}\text{Ne}^{2+}$ which are well resolved to the background level. Prior to

each analytical session the instrument was tuned for optimal peak shape. Instrumental 266 operating conditions are reported in Table 2. All measurements were performed at 267 plateau voltage of the CDDs, which was checked prior to every analytical session. 268 Before the beginning of sample analysis, measurements of NIST SRM 610 were 269 continued until instrumental drift (due to warm-up) was less than 200 ppm over a 270 bracketing sequence duration of twelve minutes. Boron signal intensities of NIST 271 272 SRM 610 and samples were matched within 10% in signal intensity by adapting the laser repetition rate. The acquisition parameters in static mode for analysis of NIST 273 274 SRM 610 and samples were set to acquire 200 cycles of 1 s integrations each. During the first 40 cycles, the background signal was acquired whereas the remaining cycles 275 276 represent the sum of the background and the reference material, or the background and the sample signals. A complete measurement consisting of 200 cycles of a single 277 reference material/sample took four minutes before the next sample was introduced. 278 For analysis we adopted the standard sample bracketing procedure and the B isotopic 279 280 composition is reported using the delta notation:

281

282
$$\delta^{11}B_{sample}(\%_0) = \left[\frac{\binom{(^{11}B/^{10}B)_{sample}}{\binom{(^{11}B/^{10}B)_{NIST610-1} + \binom{(^{11}B/^{10}B)_{NIST610+1}}{2}} - 1\right] \times 1000 \text{ Eq. (1)}$$

283

Where NIST 610-1 and NIST 610+1 refer to the analysis of the reference material before and after the sample. The uncertainty of the samples was calculated according to:

287

288
$$2SE_{\delta^{11}B_{sample}}(\%_0) =$$

289
$$\sqrt{\left(\frac{SE}{11/10_B}\right)^2_{NIST-1} + \left(\frac{SE}{11/10_B}\right)^2_{sample} + \left(\frac{SE}{11/10_B}\right)^2_{NIST+1}} \times 2 \times 1000 \quad \text{Eq. (2)}$$

290

Where ^{11/10}B ratios represent mean values of the reference material and the sample calculated from one measurement, respectively (based on 160 cycles) and SE represents the standard error of the ^{11/10}B ratios. Due to the natural inhomogeneity of the samples the analytical uncertainty is represented best by repeated measurements of the homogenous reference material given by:

296

297
$$\delta^{11}B_{NIST610}(\%_0) = \left[\frac{\frac{11/10}{B_0}}{\left(\frac{11/10}{B_{-1}} + \frac{11/10}{B_{+1}}\right)/2} - 1\right] \times 1000 \quad \text{Eq. (3)}$$

298

Where the measurements of the $(^{11/10}B)_{-1}$ and $(^{11/10}B)_{+1}$ ratios of NIST 610 were performed before and after the measurement of $(^{11/10}B)_{0}$, respectively. For the determination of the analytical uncertainty and external reproducibility all measurements of NIST 610 performed between each sample measurement were taken into account. On average the analytical uncertainty and external reproducibility is 0.66‰.

305

306 Conversion of $\delta^{ll}B_{O.universa}$ to seawater scale

³⁰⁷ Due to the B addition to our culture media, the $\delta^{11}B_{seawater}$ shifted from 37.95 to on ³⁰⁸ average 4.66 ‰. Therefore, the $\delta^{11}B_{O.universa}$ shifted accordingly. In order to compare ³⁰⁹ our *O. universa* data to published values (Fig. 3A), the measured $\delta^{11}B$ was converted ³¹⁰ to seawater scale using (Zeebe & Wolf-Gladrow, 2001):

311

312
$$\delta^{11}B_c = \alpha_{sw-msw} \times \delta^{11}B_m + \varepsilon \quad \text{Eq. (4)}$$

313

Where ε is $(\alpha_{sw-msw} - 1) \ge 1000$, $\delta^{11}B_c$ represents the converted $\delta^{11}B$ for the measured value $(\delta^{11}B_m)$, α_{sw-msw} is a fractionation factor expressing the difference between the natural seawater and manipulated seawater:

317

318
$$\alpha_{sw-msw} = (\delta^{11}B_{sw} + 10^3)/(\delta^{11}B_{msw} + 10^3)$$
 Eq. (5)

- 319
- 320 Statistics:
- Lamtool was used for analysis and background correction of the δ^{11} B data. All other statistics were carried out using R (R Core Team, 2008). Error bars represent $\pm 2\sigma$ errors, correlations were calculated by linear regression.

325 **Results:**

326 *B/Ca ratios:*

327	The B/Ca ratio of <i>O. universa</i> shows a strong negative correlation ($R^2 = 0.96$) with C_T
328	irrespective of the pH_T of the culture media (Fig 2A). It is also correlated to [CO ₂] but
329	to a lesser extent ($R^2 = 0.64$; Fig 2C). B/Ca also decreases with increasing [CO_3^{2-}] in
330	specimens grown under a pH_T of 8.05, (Fig 2E). However, the B/Ca ratio of
331	specimens grown under lower pH_T values (7.9 and 7.7) is negatively offset from the
332	relationship found at $pH_{\rm T}$ 8.05 and the overall correlation of B/Ca and $[{\rm CO_3}^{2\text{-}}]$ is very
333	low ($R^2 = 0.2$; Fig 2E). Of all the carbonate species, the B/Ca ratio exhibits the best,
334	negative, relationship with increasing [HCO $_3$ ⁻], irrespective of the pH $_T$ of the culture
335	medium ($R^2 = 0.96$; Fig 2G). Plotted against the ratio of [B(OH) ₄ ⁻] over each of the
336	carbon species (Fig 2B, D, F, H), the correlations are high for all combinations but
337	highest for $[B(OH)_4^-]/[CO_3^{-2}]$.
338 339	
340	Boron isotopic fractionation $(\delta^{11}B)$:
341	Single, measured δ^{11} B values of <i>O. universa</i> are given in Supplementary Table 1,
342	errors are calculated according to Eq. (2). Mean and converted values using Eq. (4)
343	and Eq. (5) are shown in Fig. 3A and Table 3. The fractionation of boron isotopes in
344	the shells of O. universa is dependent on the pH of the culture medium, increasing
345	with pH_{T} from 15‰ at pH_{T} 7.7 to 18.8‰ at pH_{T} 8.05. These values are close to the B
346	fractionation curve of $B(OH)_4^-$ obtained for artificial seawater by (Fig 3A; Klochko et
347	al., 2006). $\delta^{11}B$ increases slightly with increasing [CO ₃ ²⁻] at constant pH _T (Fig 3B).
348	However, the data are all within analytical error, suggesting that there is no significant
349	effect of $[CO_3^{2-}]$ on $\delta^{11}B$.
350	
351	
352	
353	Discussion:
354	B/Ca:
355	Foster (2008) identified $[CO_3^{2-}]$ as having a major control on B/Ca in samples of
356	foraminifera from down core samples and core tops. A similar conclusion was
357	reached by Allen et al. (2011) for O. universa. These authors demonstrated a trend of
358	decreasing B/Ca with increasing pH and $[CO_3^{2-}]$; however, due to the co-variations of

the carbonate system in natural seawater it is difficult to identify the differential

360	effects of the individual parameters. Experimentally decoupling pH_T from other
361	parameters of the carbonate system using modified seawater media allows us to
362	decouple the relationships and identify the controlling carbon species. Our results
363	demonstrate that the amount of boron incorporated into O. universa calcite is a
364	function of C_T (Fig. 2A). As C_T increases, B/Ca decreases, suggesting that B(OH) ₄ ⁻
365	competes with carbon species for inclusion into the calcite lattice. When B/Ca ratios
366	are plotted against [CO ₂], the relationship is similar to that of $C_{\rm T}$, however only <1%
367	of $C_{\rm T}$ is in the form of CO ₂ so this species is unlikely to have a major control on
368	boron incorporation. The remaining >99% is ~10% CO_3^{2-} and ~ 90% HCO_3^{-} (Zeebe
369	and Wolf-Gladrow, 2001). Due to the strong correlation of the B/Ca ratio and
370	$[B(OH)_4^-]/[[C_T]]$, one could argue that for a utilize both HCO_3^- and CO_3^{-2-} as
371	substrate for calcification and, therefore, that $C_{\rm T}$ is the factor controlling the B/Ca
372	ratios. However, because [HCO3 ⁻] and [CO3 ² -] in our treatments, increase and
373	decrease with decreasing pH_T , respectively (Table 1), we can distinguish between
374	bicarbonate and carbonate ion control over the B/Ca ratio.
375	
376	At constant pH_T , the relationship between B/Ca and $[CO_3^{2-}]$ (Fig. 5.1C) supports the
377	hypothesis of competition between CO_3^{2-} and $B(OH)_4^{-}$. However, when $[CO_3^{2-}]$ is
378	held constant and pH_T is decreased, B/Ca significantly decreases despite the fact that
379	$[CO_3^{2-}]$ remains more or less constant (Fig 2 E, Table 1). If the same relationships are
380	examined for B/Ca and $[HCO_3^-]$ a strong correlation between $[HCO_3^-]$ and B/Ca is
381	observed for both, the absolute concentration of HCO ₃ ⁻ (Fig. 2G) and also for the ratio
382	of $[B(OH)_4^-]/[HCO_3^-]$ with no effect of changing pH_T (Fig. 2H). The close correlation
383	between $[CO_3^{2-}]$ and B/Ca at constant pH_T can be explained by the corresponding
384	increases in [HCO ₃ ⁻] in these treatments (Table 1).
385	
386	In agreement with our results, the study of Allen et al. (2012) investigated the effects
387	of decoupling pH and the carbonate system on B/Ca and suggest that B(OH)4
388	competes with carbon species for inclusion into the calcite lattice in three planktonic
389	species Globigerinoides sacculifer, Globigerinoides ruber, and Orbulina universa.
390	However, analysis of planktonic foraminifera from core tops revealed correlation
391	between B/Ca and exclusively B(OH) ₄ ⁻ /HCO ₃ ⁻ (excluding B(OH) ₄ ⁻ /CO ₃ ²⁻ and B(OH) ₄ ⁻
392	$/C_{\rm T.}$) Yu et al., (2007). A recent study by Kaczmarek et al. (2015b) shows the same

- 393 competition between $B(OH)_4^-$ and HCO_3^- in the benthic species *Amphistegina*
- 394 *lessonii* cultured in a pH-[CO₃²⁻] decoupled seawater. The observation that B/Ca is
- driven by $B(OH)_4^{-}/HCO_3^{-}$ and not related to CO_3^{-2} only becomes visible at higher pH
- 396 (8.6) when $[B(OH)_4]$ is sufficiently high (see Fig. 6 and Table S1 in Kaczmarek et al.,
- 397 2015b). Below 8.6 for a laso correlates with $B(OH)_4/CO_3^{2-}$.
- 398

The finding that $B(OH)_4^-/HCO_3^-$ is controlling on boron incorporation in *O. universa* calcite is also in agreement with the hypotheses of Hemming and Hanson (1992) who suggested that only $B(OH)_4^-$ is incorporated into marine carbonates with the partition coefficient defined below.

403 404

$$K_{\rm D} = \frac{[B/Ca]_{solid}}{[B(OH)_4^- / HCO_3^-]_{seawater}} \qquad \text{Eq. (6)}$$

405

406 To summarize, based on our study, we can eliminate a control by $[CO_3^{2-}]$ but cannot

- 407 exclude $[B(OH)_4^-/CO_3^{2^-}]$. By comparison to the B/Ca control in the benthic
- 408 foraminifer Amphistegina lessonii (Kaczmarek et al., 2015), we assume B/Ca in
- 409 planktonic foraminifera is also a function of $[B(OH)_4/HCO_3]$.
- 410

411 Boron isotopic fractionation ($\delta^{11}B$):

As the various species of inorganic carbon and pH_T are tightly linked, it is still to be 412 experimentally demonstrated, beyond doubt, whether only pH_T and/or the 413 concentration of one or several carbonate species might have an effect on $\delta^{11}B$. The 414 results for treatments with varying pH_T and constant carbonate ion concentration 415 displayed the same relationship as those from the calibration curve for O. universa 416 produced by Sanyal et al. (1996) but the absolute values for a given pH_T are slightly 417 lower by approximately 1 to 2‰ when compared to the values corrected to the 418 fractionation factor suggested by Klochko et al. (2006) (Zeebe et al., 2008). The 419 420 effects of the unnaturally high $C_{\rm T}$ and $A_{\rm T}$ values in the treatments cannot be discounted as the cause of this difference, although it is unlikely because the $\delta^{11}B$ 421 values proved to be robust when a range of $[CO_3^{2-}]$ was used. The values produced for 422 δ^{11} B in this study match closely with the values for artificial seawater given by 423 Klochko et al. (2006). This is caused by the suppression of the vital effects imposed 424

425	by O. universa. Theoretical considerations demonstrate that at 10X boron
426	concentration compared to natural seawater, vital effects are suppressed and the
427	isotopic value of biogenic calcite approaches the value of the borate species being
428	taken up (Zeebe, 2003). This was confirmed by the comparison of the boron isotopic
429	values of O. universa grown at low and high light (Hönisch et al., 2003) and supports
430	the notion that borate is indeed the species being taken up. There is no effect of
431	varying $[CO_3^{2-}]$ on $\delta^{11}B$ of samples grown at the same pH but, most importantly, in
432	light of the results obtained for the B/Ca ratio, there is also no effect of [HCO ₃ ⁻] (Fig.
433	3C).
434	
435	
436	Proxy implications:
437	Based on our results and other culture studies, it becomes clear that despite strong
438	biological effects on the ambient carbonate chemistry (Köhler-Rink and Kuhl, 2001;
439	Köhler-Rink and Kühl, 2000; Rink et al., 1998; Wolf-Gladrow et al., 1999; Zeebe et
440	al., 2008), the boron isotopic composition and the B/Ca are faithful predictors of pH
441	and bicarbonate ion concentration, respectively. Our results provide strong evidence
442	that [HCO3 ⁻] is recorded in the B/Ca ratio. A wide range of [HCO3 ⁻] was necessary to
443	facilitate de-coupling the carbonate system from pH_T , however the high $[HCO_3^-]$ in
444	several of these treatments are unrealistic for natural seawater systems, particularly
445	paleo-systems which exhibit lower [HCO3-] than present day oceans (calculated from
446	values given in Zeebe, 2012) and more environmentally-relevant values should be
447	used for future calibration experiments. The proxy should therefore be ground-truthed
448	using core top samples. The correlation of the B/Ca ratio to $[HCO_3^-]$ rather than to
449	$[CO_3^{2-}]$ might have some implications for existing paleo-carbonate chemistry
450	reconstructions based on this proxy such as the study by Foster (2008) and that of Yu
451	et al. (2014), since the same relationship probably holds for benthic foraminifers as
452	for planktonics.
453	
454	A sound understanding of the effects of past carbon perturbations becomes
455	increasingly urgent in an age where anthropogenic activities are producing such rapid
156	changes in global climate (Biima et al. 2013: Knoll and Fischer 2011). The

- changes in global climate (Bijma et al., 2013; Knoll and Fischer, 2011). The
- 457 usefulness of biogeochemical proxies to reconstruct paleoceanographic conditions is

- 458 well established for environmental parameters such as temperature and salinity
- 459 (Wefer et al., 1999) but uncertainties remain for proxies related to pH and the
- 460 carbonate system (Allen and Honisch, 2012; Hönisch et al., 2007; Katz et al., 2010;
- ⁴⁶¹ Pagani et al., 2005). This study confirms the robustness of δ^{11} B as an independent pH
- 462 proxy and adds further weight to the growing body of evidence that B/Ca in
- 463 planktonic foraminiferal calcite may be used as an independent proxy for $[HCO_3^{2-}]$
- 464 (Yu et al. 2007), thereby allowing researchers to fully constrain the carbonate system.
- 465 466

467 Acknowledgements:

- 468 Thanks are due to the sailors Jean-Yves Carval and Jean-Luc Prevost for their help
- and expertise with collection of foraminifera, to Samir Alliouane for assistance in the
- 470 laboratory, Paul Mahacek for construction of the lighting equipment and Fabien
- 471 Lombard the use of his laboratory space and equipment. This work is a contribution to
- 472 the European Union, Framework 7 'Mediterranean Sea Acidification under a
- 473 changing climate' project (MedSeA; grant agreement 265103).
- 474

475 References

- 476
- 477 Allen, K. A. and Honisch, B.: The planktic foraminiferal B/Ca proxy for seawater
- 478 carbonate chemistry: A critical evaluation, Earth Planet Sci Lett, 345, 203-211, 2012.
- 479 Allen, K. A., Honisch, B., Eggins, S. M., and Rosenthal, Y.: Environmental controls
- 480 on B/Ca in calcite tests of the tropical planktic foraminifer species *Globigerinoides*
- 481 *ruber* and *Globigerinoides sacculifer*, Earth Planet Sci Lett, 351, 270-280, 2012.
- 482 Allen, K. A., Hönisch, B., Eggins, S. M., Yu, J., Spero, H. J., and Elderfield, H.:
- 483 Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina
- 484 *universa*, Earth Planet Sci Lett, 309, 291-301, 2011.
- 485 Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the oxygen
- 486 isotopic compostion of planktonic foraminifera: Experimental results and revised
- 487 paleotemperature equations, Paleoceanography, 13, 150-160, 1998.
- 488 Bijma, J., Hemleben, C., Huber, B. T., Erlenkeuser, H., and Kroon, D.: Experimental
- determination of the ontogenetic stable isotope variability in two morphotypes of
- 490 Globigerinella siphonifera (d'Orbigny), Mar. Micropaleontol., 35, 141-160, 1998.

- 491 Bijma, J., Pörtner, H. O., Yesson, C., and Rogers, A. D.: Climate change and the
- 492 oceans what does the future hold?, Mar Pollut Bull, 74, 495-505, 2013.
- 493 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A.,
- 494 DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao,
- 495 S., and Thornton, P.: Carbon and Other Biogeochemical Cycles. In: Climate Change
- 496 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
- 497 Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T. F.,
- 498 Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
- 499 Bex, V., and Midgley, P. M. (Eds.), Cambridge University Press, Cambridge, United
- 500 Kingdom and New York, NY, USA, 2013.
- 501 Dickson, A.: An exact definition of total alkalinity and a procedure for the estimation
- 502 of alkalinity and total inorganic carbon from titration data, Deep Sea Research Part A.
- 503 Oceanographic Research Papers, 28, 609-623, 1981.
- 504 Dickson, A. G.: The development of the alkalinity concept in marine chemistry, Mar.
- 505 Chem., 40, 49-63, 1992.
- 506 Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic
- seawater from 273.15 to 318.15 K, Deep Sea Research Part A. Oceanographic
- 508 Research Papers, 37, 755-766, 1990.
- 509 Dickson, A. G., Sabine, C. L., Christian, J. R., and (Eds.): Guide to best practices for
- 510 ocean CO₂ measurements, 191 pp., 2007.
- 511 DOE: Handbook of methods for the analysis of the various parameters of the cabon
- dioxide system in seawater; version 2, ORNL/CDIAC-74, 1994.
- ⁵¹³ Foster, G. L.: Seawater pH, pCO₂ and [CO₃⁻²] variations in the Caribbean Sea over
- 514 the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera, Earth
- 515 Planet Sci Lett, 271, 254-266, 2008.
- 516 Foster, G. L., Lear, C. H., and Rae, J. W. B.: The evolution of pCO₂, ice volume and
- climate during the middle Miocene, Earth Planet Sci Lett, 341, 243-254, 2012.
- 518 Foster, G. L., Ni, Y. Y., Haley, B., and Elliott, T.: Accurate and precise isotopic
- 519 measurement of sub-nanogram sized samples of foraminiferal hosted boron by total
- evaporation NTIMS, Chemical Geology, 230, 161-174, 2006.
- 521 Gattuso, J.-P. and Hansson, L.: Ocean acidification: background and history. In:
- 522 Ocean Acidification, Gattuso, J.-P. and Hansson, L. (Eds.), Oxford University Press,
- 523 New York, NY, USA, 2011.

- 524 Hemming, N. G., Guilderson, T. P., and Fairbanks, R. G.: Seasonal variations in the
- 525 boron isotopic composition of coral: A productivity signal?, Global Biogeochem Cy,
- 526 12, 581-586, 1998.
- 527 Hemming, N. G. and Hanson, G. N.: Boron isotopic composition and concentration in
- modern marine carbonates, Geochim. Cosmochim. Acta, 56, 537-543, 1992.
- 529 Henehan, M. J., Foster, G. L., Rae, J. W., Prentice, K. C., Erez, J., Bostock, H. C.,
- 530 Marshall, B. J., and Wilson, P. A.: Evaluating the utility of B/Ca ratios in planktic
- 531 foraminifera as a proxy for the carbonate system: A case study of *Globigerinoides*
- ruber, Geochemistry, Geophysics, Geosystems, 16, 1052-1069, 2015.
- 533 Hönisch, B., Allen, K., Hyams, O., Penman, D., Raitzsch, M., Ruprecht, J., Thomas,
- E., and Zachos, J.: Ocean acidification during the Cenozoic, Appl. Geochem., 26,
- 535 S288-S288, 2011.
- 536 Hönisch, B., Bickert, T., and Hemming, N. G.: Modern and Pleistocene boron isotope
- 537 composition of the benthic foraminifer Cibicidoides wuellerstorfi, Earth Planet Sci
- 538 Lett, 272, 309-318, 2008.
- 539 Hönisch, B., Bijma, J., Russell, A. D., Spero, H. J., Palmer, M. R., Zeebe, R. E., and
- 540 Eisenhauer, A.: The influence of symbiont photosynthesis on the boron isotopic
- composition of foraminifera shells, Mar. Micropaleontol., 49, 87-96, 2003.
- 542 Hönisch, B. and Hemming, N. G.: Surface ocean pH response to variations in pCO₂
- through two full glacial cycles, Earth Planet Sci Lett, 236, 305-314, 2005.
- 544 Hönisch, B., Hemming, N. G., Archer, D., Siddall, M., and McManus, J. F.:
- 545 Atmospheric carbon dioxide concentration across the mid-Pleistocene transition,
- 546 Science, 324, 1551-1554, 2009.
- 547 Hönisch, B., Hemming, N. G., Grottoli, A. G., Amat, A., Hanson, G. N., and Bijma,
- 548 J.: Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and
- vital effects, Geochim. Cosmochim. Acta, 68, 3675-3685, 2004.
- 550 Hönisch, B., Hemming, N. G., and Loose, B.: Comment on "A critical evaluation of
- the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates" by M.
- 552 Pagani, D. Lemarchand, A. Spivack and J. Gaillardet, Geochim. Cosmochim. Acta,
- 553 71, 1636-1641, 2007.
- 554 Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe,
- 555 R. E., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J. B., Zachos,
- 556 J. C., Royer, D. L., Barker, S., Marchitto Jr., T. M., Moyer, R., Pelejero, C., Ziveri, P.,

- 557 Foster, G. L., and Williams, B.: The geological record of ocean acidification, Science,
- 558 335, 1302-1302, 2012.
- 559 Hoppe, C. J. M., Langer, G., Rokitta, S. D., Wolf-Gladrow, D. A., and Rost, B.:
- 560 Implications of observed inconsistencies in carbonate chemistry measurements for
- ocean acidification studies, Biogeosciences, 9, 2401-2405, 2012.
- 562 Kaczmarek, K., Horn, I., Nehrke, G., and Bijma, J.: Simultaneous determination of
- $\delta 11B$ and B/Ca ratio in marine biogenic carbonates at nanogram level, Chemical
- 564 Geology, 392, 32-42, 2015a.
- 565 Kaczmarek, K., Langer, G., Nehrke, G., Horn, I., Misra, S., Janse, M., and Bijma, J.:
- 566 Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled
- carbonate chemistry, Biogeosciences, 12, 1753-1763, 2015b.
- 568 Katz, M. E., Cramer, B. S., Franzese, A., Hönisch, B., Miller, K. G., Rosenthal, Y.,
- and Wright, J. D.: Traditional and emerging geochemical proxies in foraminifera, J.
- 570 Foraminifer. Res., 40, 165-192, 2010.
- 571 Klochko, K., Cody, G. D., Tossell, J. A., Dera, P., and Kaufman, A. J.: Re-evaluating
- 572 boron speciation in biogenic calcite and aragonite using 11B MAS NMR, Geochim.
- 573 Cosmochim. Acta, 73, 1890-1900, 2009.
- 574 Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H., and Tossell, J. A.: Experimental
- measurement of boron isotope fractionation in seawater, Earth Planet Sci Lett, 248,
- 576 276-285, 2006.
- 577 Knoll, A. H. and Fischer, W. W.: Skeletons and ocean chemistry: the long view. In:
- 578 Ocean Acidification, Gattuso, J.-P. and Hansson, L. (Eds.), Oxford University Press,
- 579 New York, NY, USA, 2011.
- 580 Köhler-Rink, S. and Kuhl, M.: Microsensor studies of photosynthesis and respiration
- 581 in the larger symbiont bearing foraminifera Amphistegina lobifera, and Amphisorus
- 582 hemprichii, Ophelia, 55, 111-122, 2001.
- 583 Köhler-Rink, S. and Kühl, M.: Microsensor studies of photosynthesis and respiration
- 584 in larger symbiotic foraminifera. I The physico-chemical microenviron-ment of
- 585 Marginopora vertebralis, Amphistegina lobifera and Amphisorus hemprichii, Mar.
- 586 Biol., 137, 473-486, 2000.
- 587 Lavigne, H. and Gattuso, J.-P.: Seacarb 1.2.3., an R package to calculate parameters
- of the seawater carbonate system, , 2013. online available at: http://cran.at.r-
- 589 project.org/web/packages/seacarb/index.html, 2013.

- 590 Longerich, H. P., Jackson, S. E., and Günther, D.: Inter-laboratory note. Laser
- 591 ablation inductively coupled plasma mass spectrometric transient signal data
- acquisition and analyte concentration calculation, J Anal Atom Spectrom, 11, 899-
- 593 904, 1996.
- 594 Martínez-Botí, M., Foster, G., Chalk, T., Rohling, E., Sexton, P., Lunt, D., Pancost,
- 595 R., Badger, M., and Schmidt, D.: Plio-Pleistocene climate sensitivity evaluated using
- high-resolution CO₂ records, Nature, 518, 49-54, 2015.
- 597 Mehrbach, C., Culberso.Ch, Hawley, J. E., and Pytkowic.Rm: Measurement of
- ⁵⁹⁸ apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure,
- 599 Limnol. Oceanogr., 18, 897-907, 1973.
- 600 Pagani, M., Lemarchand, D., Spivack, A., and Gaillardet, J.: A critical evaluation of
- 601 the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates, Geochim.
- 602 Cosmochim. Acta, 69, 953-961, 2005.
- 603 Palmer, M. R., Pearson, P. N., and Cobb, S. J.: Reconstructing past ocean pH-depth
- 604 profiles, Science, 282, 1468-1471, 1998.
- 605 Palmer, M. R., Spivack, A. J., and Edmond, J. M.: Temperature and pH controls over
- the fractionation during adsorption of boron on marine clay, Geochim. Cosmochim.
- 607 Acta, 51, 2319-2323, 1987.
- 608 Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over
- 609 the past 60 million years, Nature, 406, 695-699, 2000.
- 610 Pearson, P. N. and Palmer, M. R.: Middle Eocene seawater pH and atmospheric
- carbon dioxide concentrations, Science, 284, 1824-1826, 1999.
- 612 R Core Team: R: A language and environment for statistical computing., R
- 613 Foundation for Statistical Computing, Vienna, Austria, 2008.
- 614 Rae, J. W. B., Foster, G. L., Schmidt, D. N., and Elliott, T.: Boron isotopes and B/Ca
- 615 in benthic foraminifera: Proxies for the deep ocean carbonate system, Earth Planet Sci
- 616 Lett, 302, 403-413, 2011.
- 617 Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev,
- 618 S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley,
- 619 L. D., and Wang, F.: Observations: Ocean. In: Climate Change 2013: The Physical
- 620 Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
- 621 the Intergovernmental Panel on Climate Change, Stocker, T. F., Qin, D., Plattner, G.-
- 622 K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,

- 623 P. M. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New
- 624 York, NY, USA, 2013.
- 625 Rink, S., Kühl, M., Bijma, J., and Spero, H. J.: Microsensor studies of photosynthesis
- and respiration in the symbiotic foraminifer Orbulina universa, Mar. Biol., 131, 583-
- 627 595, 1998.
- 628 Sanyal, A., Bijma, J., Spero, H. J., and Lea, D. W.: Empirical relationship between pH
- and the boron isotopic composition of *Globigerinoides sacculifer*: Implications for the
- boron isotope paleo-pH proxy, Paleoceanography, 16, 515-519, 2001.
- 631 Sanyal, A., Hemming, N. G., Broecker, W. S., and Hanson, G. N.: Changes in pH in
- the eastern equatorial pacific across stage 5-6 boundary based on boron isotopes in
- 633 foraminifera, Global Biogeochem Cy, 11, 125-133, 1997.
- 634 Sanyal, A., Hemming, N. G., Broecker, W. S., Lea, D. W., Spero, H. J., and Hanson,
- 635 G. N.: Oceanic pH control on the boron isotopic composition of foraminifera:
- Evidence from culture experiments, Paleoceanography, 11, 513-517, 1996.
- 637 Sanyal, A., Hemming, N. G., Hanson, G. N., and Broecker, W. S.: Evidence for a
- higher pH in the glacial ocean from boron isotopes in foraminifera, Nature, 373, 234-
- 639 236, 1995.
- 640 Sanyal, A., Nugent, M., Reeder, R. J., and Bijma, J.: Seawater pH control on the
- 641 boron isotopic composition of calcite: Evidence from inorganic calcite precipitation
- experiments, Geochim. Cosmochim. Acta, 64, 1551-1555, 2000.
- 643 Siegenthaler, U. and Sarmiento, J. L.: Atmospheric carbon dioxide and the ocean,
- 644 Nature, 365, 119-125, 1993.
- 645 Spero, H. J. and Lea, D. W.: Intraspecific stable-isotope variability in the planktic
- 646 for a minifera *Globigerinoides-sacculifer* Results from laboratory experiments, Mar.
- 647 Micropaleontol., 22, 221-234, 1993.
- 648 Spivack, A. J., You, C.-F., and Smith, H. J.: Foraminiferal boron isotope ratios as a
- proxy for surface ocean pH over the past 21 Myr, Nature, 363, 149-151, 1993.
- 650 Van Andel, T. H.: Mesozoic/Cenozoic calcite compensation depth and the global
- distribution of calcareous sediments, Earth Planet Sci Lett, 26, 187-194, 1975.
- 652 Vengosh, A., Kolodny, Y., Starinski, A., Chivas, A. R., and McCulloch, M. T.:
- 653 Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates,
- 654 Geochim. Cosmochim. Acta, 55, 2901-2910, 1991.

- 655 Wefer, G., Berger, W. H., Bijma, J., and Fischer, G.: Clues to ocean history: a brief
- overview of proxies. In: Use of proxies in paleoceanography: Examples from the
- 657 South Atlantic, Fischer, G. and Wefer, G. (Eds.), Springer-Verlag, Berlin, Heidelberg,
- 658 1999.
- 659 Wolf-Gladrow, D. A., Bijma, J., and Zeebe, R. E.: Model simulation of the carbonate
- 660 chemistry in the microenvironment of symbiont bearing foraminifera, Mar. Chem.,
- 661 **64**, 181-198, 1999.
- 662 Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G.:
- 663 Total alkalinity: The explicit conservative expression and its application to
- biogeochemical processes, Mar. Chem., 106, 287-300, 2007.
- 665 Yu, J., Anderson, R., and Rohling, E.: Deep Ocean Carbonate Chemistry and Glacial-
- 666 Interglacial Atmospheric CO₂ Change, Oceanography, 27, 16-25, 2014.
- 667 Zeebe, R. E.: History of Seawater Carbonate Chemistry, Atmospheric CO₂, and
- 668 Ocean Acidification, Annu Rev Earth Pl Sc, 40, 141-165, 2012.
- 669 Zeebe, R. E.: Vital effects in foraminifera do not compromise the use of δ^{11} B as a
- paleo-pH indicator: Evidence from modeling, Paleoceanography, 18, 2003.
- 671 Zeebe, R. E., Bijma, J., Hönisch, B., Sanyal, A., Spero, H. J., and Wolf-Gladrow, D.
- A.: Vital effects and beyond: a modelling perspective on developing
- 673 palaeoceanographical proxy relationships in foraminifera. In: Biogeochemical
- 674 Controls on Palaeoceanographic Environmental Proxies, Austin, W. E. N. and James,
- 675 R. H. (Eds.), Geological Society of London, Special Publications, London, 2008.
- 676 Zeebe, R. E., Sanyal, A., Ortiz, J. D., and Wolf-Gladrow, D. A.: A theoretical study of
- the kinetics of the boric acid borate equilibrium in seawater, Mar. Chem., 73, 113-
- 678 124, 2001.
- 679 Zeebe, R. E. and Wolf-Gladrow, D. A.: CO₂ in Seawater: Equilibrium, Kinetics,
- 680 Isotopes, Elsevier, Amsterdam, The Netherlands, 2001.
- 681
- 682 683
- 684
- 685
- 686
- 687 688
- 689
- 690

694 Tables and table legends

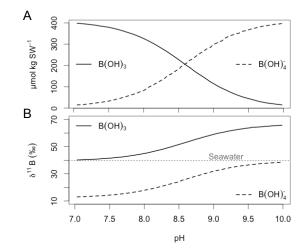
Table 1: Average properties of the manipulated seawater culture medium from 4

samples (2 from the start of the incubation and two from the end of the incubation).

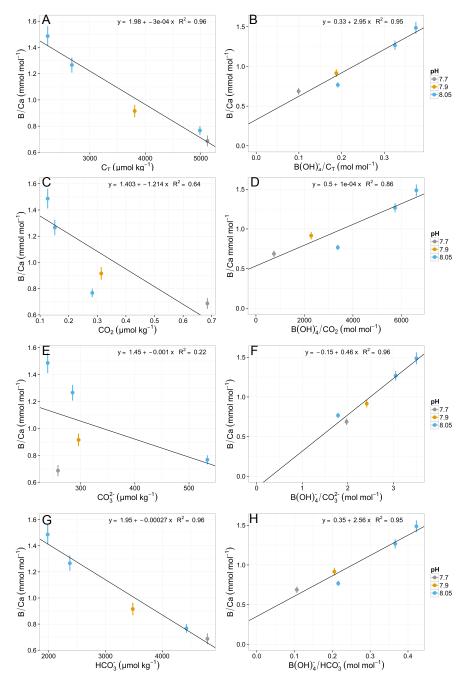
рНт	CT (µmol kg ⁻¹)	A _T (μmol kg ⁻¹)	pCO ₂ (µatm)	CO3 ²⁻ (µmol kg ⁻¹)	HCO3 ⁻ (µmol kg ⁻¹)	Т (°С)	S	δ ¹¹ Β (‰)
8.05 ±	2671.5	3050 ± 27	516.5	285.6	2370.6	23 ± 0.7	38 ± 1.02	4.98 ± 0.85
0.05								
$8.05 \pm$	2235.9	2566.8 ± 11	431.8	238.7	1981	23 ± 0.7	38 ± 0.6	5.35 ± 0.53
0.02								
$8.05 \pm$	4985.4	5594.3 ± 38	1103.7	533.9	4424.2	23 ± 0.7	38 ± 0.5	4.20 ± 1.03
0.03								
7.9 ±	3809.2	4153.2 ±	1061	296.6	3478.4	23 ± 0.7	38 ± 0.3	4.11 ± 0.94
0.02		154						
7.7 ±	5119.8	5361.8 ±23	2335.1	257.8	4791.6	23 ± 0.7	38 ± 0.9	4.69 ± 2.4
0.03								

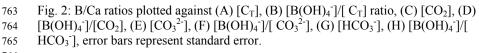
1 Table 2: Instrumental operating conditions for the MC-ICP-MS and LA.

Cool Gas[l/min]:	14.6
Aux Gas[l/min]:	1.2
Sample Gas[l/min]:	1.5
Add Gas[l/min]:	0.4
Operation Power[W]:	1269
X-Pos[mm]:	1.5
Y-Pos[mm]:	-1.7
Z-Pos[mm]:	-2.5
Wavelengh [nm]	194
Pulse energy [J/cm ²]	2
Pulse width [fs]	~200
Spot size [µm]	50


- Table 3: Mean values and 2SE of B/Ca and δ^{11} B values for the different experimental
- 714 treatments.

pH _T	CO ₃ ²⁻	δ ¹¹ B	B/Ca	N samples
	(µmol kg ⁻¹)	(‰)		
8.05 ± 0.05	285.6	19.1 (1.27)	1.49 (0.06)	13
8.05 ± 0.02	238.7	17.8 (1.8)	1.27 (0.08)	9
8.05 ± 0.03	533.9	20 (2.24)	0.77 0.03)	12
7.9 ± 0.02	296.6	16.8 (1.29)	0.92 (0.05)	18
7.7 ± 0.03	257.8	14.9 (1.44)	0.69 (0.04)	18


751
752 Figures and legends
753
754
755


- Fig 1: (A) Bjerrum plot showing the effect of pH on concentration of dissolved boron
- species at T = 25°C, S = 35 and [B] total 416 μ mol kg⁻¹. (B) Effect of pH on boron
- isotopic composition of $B(OH)_4^-$ and $B(OH)_3$ with thermodynamic fractionation factor
- 761 $(\alpha_{3-4}) = 1.030$ (Hemming & Hanson 1992).

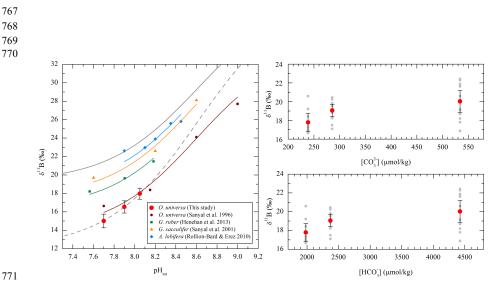


Fig 3: (A) Median and converted δ^{11} B of cultured *O. universa* calcite (black circles) error bars represent ±2 standard errors, solid grey line shows empirical values for seawater δ^{11} Bborate with a fractionation factor of $^{11-10}$ K_B = 1.020 (Hönisch et al., 2007) at T=23°C and S=38. Dashed grey line shows the experimental δ^{11} B_{borate} curve with a fractionation factor of $^{11-10}$ K_B = 1.0272 (Klochko et al., 2009) at T=23°C and S=38. (B) Median δ^{11} B of B(OH)₄⁻ in cultured *O. universa* calcite grown at constant pH of 8.05 but varying [CO₃²⁻]/[HCO₃⁻]. Error bars represent ±2 standard errors across all single laser ablation analyses per treatment.

781

782